Feature selection

Results: 571



#Item
151

  TorinoFilmLab announces FrameWork 2013 selection TorinoFilmLab has the great pleasure to present the selection for the 6th edition of FrameWork. A total of 10 first or second feature film projects from all over the w

Add to Reading List

Source URL: www.torinofilmlab.it

Language: English - Date: 2013-03-05 06:48:33
    152

    Feature Selection in Hierarchical Feature Spaces Petar Ristoski and Heiko Paulheim University of Mannheim, Germany Research Group Data and Web Science {petar.ristoski,heiko}@informatik.uni-mannheim.de

    Add to Reading List

    Source URL: dws.informatik.uni-mannheim.de

    Language: English - Date: 2015-04-21 05:23:35
      153

      Mining Emerging Patterns by Streaming Feature Selection Kui Yu1, 2, Wei Ding2, Dan A. Simovici2, and Xindong Wu✉1,3 1 Department of Computer Science, Hefei University of Technology, Hefei, 230009, China Department of C

      Add to Reading List

      Source URL: www.cs.umb.edu

      Language: English - Date: 2012-06-04 16:27:50
        154

            Best Full Length Feature: Jury Selection   

        Add to Reading List

        Source URL: www.mglff.com

        Language: English - Date: 2015-05-15 13:26:19
          155

          Mapping phenotypes to networks of genetic markers: a min-cut solution to feature selection with sparsity and connectivity constraints Chlo´ e-Agathe Azencott with Dominik Grimm, Yoshinobu Kawahara, and Karsten Borgwardt

          Add to Reading List

          Source URL: cazencott.info

          Language: English - Date: 2014-12-14 10:09:36
            156Science / Autofluorescence / Raman spectroscopy / Astronomical spectroscopy / Ultraviolet–visible spectroscopy / Discrete cosine transform / Absorption spectroscopy / Emission spectrum / Infrared spectroscopy / Physics / Spectroscopy / Chemistry

            Hybrid feature selection and SVM-based classification for mouse skin precancerous stages diagnosis from bimodal spectroscopy F. Abdat,1 M. Amouroux,1 Y. Guermeur,2 and W. Blondel1,∗ 1 Centre de Recherche en Automatique

            Add to Reading List

            Source URL: www.loria.fr

            Language: English - Date: 2011-12-24 07:06:07
            157Learning / Computational statistics / Lunar science / Supervised learning / Lunar craters / AdaBoost / Impact crater / Boosting / Müller / Ensemble learning / Machine learning / Artificial intelligence

            Automatic Detection of Craters in Planetary Images: An Embedded Framework Using Feature Selection and Boosting Wei Ding1 , Tomasz F. Stepinski2 , Lourenco Bandeira3 , Ricardo Vilalta4 Youxi Wu5 , Zhenyu Lu5 , and Tianyu

            Add to Reading List

            Source URL: www.cs.umb.edu

            Language: English - Date: 2010-09-05 18:04:21
            158Machine learning / Econometrics / Covariance and correlation / Correlation and dependence / Feature selection / Decision tree learning / Cross-validation / Logistic regression / Statistics / Regression analysis / Model selection

            An ensemble of classifiers approach with multiple sources of information Roberto Santana, Concha Bielza, Pedro Larrañaga Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid roberto.santana@upm.

            Add to Reading List

            Source URL: www.cis.hut.fi

            Language: English - Date: 2012-01-05 06:58:35
            159Estimation theory / Model selection / Information theory / Maximum likelihood / Supervised learning / Feature selection / Kullback–Leibler divergence / Regularization / Mutual information / Statistics / Statistical theory / Machine learning

            CS229 Lecture notes Andrew Ng Part VI Regularization and model

            Add to Reading List

            Source URL: see.stanford.edu

            Language: English - Date: 2007-12-11 16:41:19
            160Feature selection / Logistic regression / Random forest / Stepwise regression / Mathematical optimization / Support vector machine / Algorithm / Statistics / Regression analysis / Iteratively reweighted least squares

            Parallel Large Scale Feature Selection for Logistic Regression Sameer Singh, University of Massachusetts Amherst MA 01003

            Add to Reading List

            Source URL: www.cs.cmu.edu

            Language: English - Date: 2009-01-28 18:57:39
            UPDATE